Impact of 2000–2050 climate change on fine particulate matter (PM2.5) air quality inferred from a multi-model analysis of meteorological modes
نویسنده
چکیده
Studies of the effect of climate change on fine particulate matter (PM2.5) air quality using general circulation models (GCMs) show inconsistent results including in the sign of the effect. This reflects uncertainty in the GCM simulations of the regional meteorological variables affecting PM2.5. Here we use the CMIP3 archive of data from fifteen different IPCC AR4 GCMs to obtain improved statistics of 21st-century trends in the meteorological modes driving PM2.5 variability over the contiguous US. We analyze 1999– 2010 observations to identify the dominant meteorological modes driving interannual PM2.5 variability and their synoptic periods T. We find robust correlations (r > 0.5) of annual mean PM2.5 with T, especially in the eastern US where the dominant modes represent frontal passages. The GCMs all have significant skill in reproducing present-day statistics for T and we show that this reflects their ability to simulate atmospheric baroclinicity. We then use the local PM2.5-toperiod sensitivity (dPM2.5/dT) from the 1999–2010 observations to project PM2.5 changes from the 2000–2050 changes in T simulated by the 15 GCMs following the SRES A1B greenhouse warming scenario. By weighted-average statistics of GCM results we project a likely 2000–2050 increase of∼ 0.1 μg m−3 in annual mean PM2.5 in the eastern US arising from less frequent frontal ventilation, and a likely decrease albeit with greater inter-GCM variability in the Pacific Northwest due to more frequent maritime inflows. Potentially larger regional effects of 2000–2050 climate change on PM2.5 may arise from changes in temperature, biogenic emissions, wildfires, and vegetation, but are still unlikely to affect annual PM2.5 by more than 0.5 μg m−3.
منابع مشابه
Meteorological modes of variability for fine particulate matter (PM2.5) air quality in the United States: implications for PM2.5 sensitivity to climate change
We applied a multiple linear regression model to understand the relationships of PM2.5 with meteorological variables in the contiguous US and from there to infer the sensitivity of PM2.5 to climate change. We used 2004–2008 PM2.5 observations from ∼1000 sites (∼200 sites for PM2.5 components) and compared to results from the GEOS-Chem chemical transport model (CTM). All data were deseasonalized...
متن کاملU.S. Air Quality and Health Benefits from Avoided Climate Change under Greenhouse Gas Mitigation.
We evaluate the impact of climate change on U.S. air quality and health in 2050 and 2100 using a global modeling framework and integrated economic, climate, and air pollution projections. Three internally consistent socioeconomic scenarios are used to value health benefits of greenhouse gas mitigation policies specifically derived from slowing climate change. Our projections suggest that climat...
متن کاملArtificial neural network forecast application for fine particulate matter concentration using meteorological data
Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consi...
متن کاملInfluence of 2000–2050 climate change on particulate matter in the United States: results from a new statistical model
We use a statistical model to investigate the effect of 2000–2050 climate change on fine particulate matter (PM2.5) air quality across the contiguous United States. By applying observed relationships of PM2.5 and meteorology to the IPCC Coupled Model Intercomparision Project Phase 5 (CMIP5) archives, we bypass some of the uncertainties inherent in chemistry-climate models. Our approach uses bot...
متن کاملStrong influence of 2000-2050 climate change on particulate matter in the United States: Results from a new statistical model
We use a statistical model to investigate the effect of 2000-2050 climate change on fine particulate matter (PM2.5) air quality across the contiguous United States. By applying observed relationships of PM2.5 and meteorology to the IPCC Coupled Model Intercomparision Project Phase 5 (CMIP5) archives, we bypass many of the uncertainties inherent in chemistry-climate models. Our approach uses bot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012